If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-25X+25=0
a = 1; b = -25; c = +25;
Δ = b2-4ac
Δ = -252-4·1·25
Δ = 525
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{525}=\sqrt{25*21}=\sqrt{25}*\sqrt{21}=5\sqrt{21}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-5\sqrt{21}}{2*1}=\frac{25-5\sqrt{21}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+5\sqrt{21}}{2*1}=\frac{25+5\sqrt{21}}{2} $
| 3(x^-1)=24 | | 7+6x=12x-3 | | y+11.08/3=-0.73 | | (3x+7)2=−6x−14 | | 2k+5.75=9.75 | | j/2-1=1.79 | | 8x^=60-7x^ | | 6y-17=13 | | -30=-6y+3(y-4) | | 14=3t-25 | | 91=7(p+1) | | -4(q-79)=-16 | | 4x^-27=x^ | | 15v=7v+64 | | 24=-6(b+69) | | 10w+11=91 | | 2x^-90=8, | | 35+(2x)+(3x)=180 | | 7x^+2=30 | | 0=r/3+-2 | | 4m-13=3 | | 5n-8=-17 | | 5x+x-x+20+30=50 | | 4=z2. | | T*6=3t+12 | | 7x+2x+20=30 | | -5-x=-20x | | 30+2x+2x=180 | | Y+5=3y-7 | | 6f-34=38 | | 30+56s=37 | | (x-3)(x+4)8=x |